4D-CT lung motion estimation with deformable registration: quantification of motion nonlinearity and hysteresis.
نویسندگان
چکیده
In this article, our goal is twofold. First, we propose and compare two methods which process deformable registration to estimate patient specific lung and tumor displacements and deformation during free breathing from four-dimensional computed tomography (4D-CT) data. Second, we propose techniques to quantify the physiological parameters of motion nonlinearity and hysteresis. A Fréchet distance-based criterion is introduced to measure the motion hysteresis. Experiments were conducted with 4D-CT data of five patients treated in radiotherapy for non-small cell lung cancer. The accuracy of deformation fields assessed against expert-selected landmarks was found to be within image voxel tolerance. The second method gave slightly better results in terms of accuracy and consistency, although the differences were not statistically significant between the two methods. Lung motion nonlinearity and hysteresis are patient specific, and vary across regions within the lung during respiration. For all patients, motion between end-exhale and end-inhale was well approximated with a straight line trajectory for the majority of lung points. Hysteresis was found to be globally correlated with trajectory length. The main limitation to the proposed method is that intensity-based deformable registration is dependent on image quality and image resolution. Another limitation is the absence of gold standard which makes the validation of the computed motion difficult. However, the proposed tools provide patient specific motion information which, in radiotherapy for example, can ease the definition of precise internal margins. In the future, the integration of physiological information from multiple patients could help to create a general lung atlas with different clinical applications.
منابع مشابه
Four‐dimensional tissue deformation reconstruction (4D TDR) validation using a real tissue phantom
Calculation of four-dimensional (4D) dose distributions requires the remapping of dose calculated on each available binned phase of the 4D CT onto a reference phase for summation. Deformable image registration (DIR) is usually used for this task, but unfortunately almost always considers only endpoints rather than the whole motion path. A new algorithm, 4D tissue deformation reconstruction (4D ...
متن کاملAssessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing.
This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images ...
متن کاملEstimating the 4D Respiratory Lung Motion by Spatiotemporal Registration and Building Super-Resolution Image
The estimation of lung motion in 4D-CT with respect to the respiratory phase becomes more and more important for radiation therapy of lung cancer. Modem CT scanner can only scan a limited region of body at each couch table position. Thus, motion artifacts due to the patient's free breathing during scan are often observable in 4D-CT, which could undermine the procedure of correspondence detectio...
متن کاملFour-dimensional radiotherapy planning for DMLC-based respiratory motion tracking.
Four-dimensional (4D) radiotherapy is the explicit inclusion of the temporal changes in anatomy during the imaging, planning, and delivery of radiotherapy. Temporal anatomic changes can occur for many reasons, though the focus of the current investigation is respiration motion for lung tumors. The aim of this study was to develop 4D radiotherapy treatment-planning methodology for DMLC-based res...
متن کاملFour-dimensional dosimetry validation and study in lung radiotherapy using deformable image registration and Monte Carlo techniques
Thoracic cancer treatment presents dosimetric difficulties due to respiratory motion and lung inhomogeneity. Monte Carlo and deformable image registration techniques have been proposed to be used in four-dimensional (4D) dose calculations to overcome the difficulties. This study validates the 4D Monte Carlo dosimetry with measurement, compares 4D dosimetry of different tumor sizes and tumor mot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 35 3 شماره
صفحات -
تاریخ انتشار 2008